Понижающий конденсатор

Бестрансформаторное электропитание.Конденсатор вместо резистора

Понижающий конденсатор

В данной статье поговорим про бестрансформаторное электропитание.

В радиолюбительской практике, да и в промышленной аппаратуре источником электрического тока обычно являются гальванические элементы, аккумуляторы, или промышленная сеть 220 вольт. Если радиоприбор переносной (мобильный), то использование батарей питания себя оправдывает такой необходимостью.

Но если радиоприбор используется стационарно, имеет большой ток потребления, эксплуатируется в условиях наличия бытовой электрической сети, то питание его от батарей практически и экономически не выгодно.

Для питания различных устройств низковольтным напряжением от бытовой сети 220 вольт существуют различные виды и типы преобразователей напряжения бытовой сети 220 вольт в пониженное. Как правило, это схемы трансформаторного преобразования.

Схемы трансформаторного питания строятся по двум вариантам

1. «Трансформатор – выпрямитель — стабилизатор» — классическая схема питания, обладающая простотой построения, но большими габаритными размерами;

2. «Выпрямитель — импульсный генератор – трансформатор – выпрямитель – стабилизатор» — схема импульсного источника питания, обладающая малыми габаритными размерами, но имеющая более сложную схему построения.

Самое главное достоинство указанных схем питания – наличие гальванической развязки первичной и вторичной цепи питания. Это снижает опасность поражения человека электрическим током, и предотвращает выход аппаратуры из строя по причине возможного замыкания токоведущих частей устройства на «ноль».

Но иногда, возникает потребность в простой, малогабаритной схеме питания, в которой наличие гальванической развязки не важно. И тогда мы можем собрать простую конденсаторную схему питания. Принцип её работы заключается в «поглощении лишнего напряжения» на конденсаторе.

Для того, чтобы разобраться в том, как это поглощение происходит, рассмотрим работу простейшего делителя напряжения на резисторах.

Делитель напряжения состоит из двух резисторов R1 и R2. Резистор R1 – ограничительный, или по другому называется добавочный. Резистор R2 – нагрузочный (), он же является внутренним сопротивлением нагрузки.

Предположим, что нам необходимо из напряжения 220 вольт получить напряжение 12 вольт. Указанные U2 = 12 вольт должны падать на сопротивлении нагрузки R2. Это означает, что остальное напряжение U1 = 220 – 12 = 208 вольт должно падать на сопротивлении R1.

Допустим, что в качестве сопротивления нагрузки мы используем обмотку электромагнитного реле, а активное сопротивление обмотки реле R2 = 80 Ом.

Тогда по закону Ома, ток, протекающий через обмотку реле, будет равен: Iцепи = U2/R2 = 12/80 = 0,15 ампер. Указанный ток должен течь и через резистор R1.

Зная, что на этом резисторе должно падать напряжение U1 = 208 вольт, по закону Ома определяем его сопротивление:

R1 = UR1 / Iцепи = 208/0,15 = 1 387 Ом.

Определим мощность резистора R1: Р = UR1 * Iцепи = 208 * 0,15 = 31,2 Вт.

Для того, чтобы этот резистор не грелся от рассеиваемой на нём мощности, реальное значение его мощности необходимо увеличить в раза два, это приблизительно составит 60 Вт. Размеры такого резистора довольно внушительны. И вот здесь нам пригодится конденсатор!

Мы знаем, что любой конденсатор в цепи переменного тока обладает таким параметром, как «реактивное сопротивление» — сопротивление радиоэлемента изменяющееся в зависимости от частоты переменного тока. Реактивное сопротивление конденсатора определяется по формуле:

где п – число ПИ = 3,14, f – частота (Гц), С – ёмкость конденсатора (фарад).

Заменив резистор R1 на бумажный конденсатор С, мы «забудем» что такое резистор внушительных размеров.

Реактивное сопротивление конденсатора С должно приблизительно равняться ранее рассчитанному значению R1 = Хс = 1 387 Ом.

Преобразовав формулу заменив местами величины С и Хс, мы определим значение ёмкости конденсатора:

С1 = 1 / (2*3,14*50*1387) = 2,3*10-6 Ф = 2,3 мкФ

Это может быть несколько конденсаторов с требуемой общей ёмкостью, включенных параллельно, или последовательно.

Схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Но изображённая схема работать будет, но не так как мы планировали! Заменив массивный резистор R1 на один, или два малогабаритных конденсатора, мы выиграли в размерах, но не учли одно — конденсатор должен работать в цепи переменного тока, а обмотка реле – в цепи постоянного тока. На выходе нашего делителя переменное напряжение, и его необходимо преобразовать в постоянное. Это достигается вводом в схему диодного выпрямителя разделяющего входную и выходную цепь, а так же элементов сглаживающих пульсацию переменного напряжения в выходной цепи.

Окончательно, схема бестрансформаторного (конденсаторного) питания будет выглядеть следующим образом:

Конденсатор С2 — сглаживающий пульсации. Для исключения опасности поражения электрическим током от накопленного напряжения в конденсаторе С1, в схему введен резистор R1, который шунтирует конденсатор своим сопротивлением.

При работе схемы он своим большим сопротивлением не мешает, а после отключения схемы от сети, в течение времени, определяемого секундами, через резистор R1 происходит разряд конденсатора.

Время разряда определяется обыкновенной формулой:

Для того, чтобы следующий раз не делать все вышеперечисленные расчёты, выведем окончательную формулу расчёта ёмкости конденсатора схемы бестрансформаторного (конденсаторного) питания.

При известных значениях входного и выходного напряжения, а также сопротивления R2 (оно же — сопротивление нагрузки ), значение сопротивления R1 находится в соответствии с пунктом 3 статьи «Делитель напряжения«:

Объединив две формулы, находим конечную формулу расчета ёмкости конденсатора схемы бестрансформаторного питания:

где – сопротивление нагрузки, в нашем случае это – сопротивление обмотки реле Р1.

Учитывая, что при работе в переменном напряжении в конденсаторе происходят перезарядные процессы, а также сдвиг фазы тока по отношению к фазе напряжения, необходимо брать конденсатор на напряжение в 1,5…2 раза больше того напряжения, которое подаётся в цепь питания. При сети 220 вольт, конденсатор должен быть рассчитан на рабочее напряжение не менее 400 вольт.

По указанной выше формуле можно рассчитать значение ёмкости схемы бестрансформаторного питания для любого устройства, работающего в режиме постоянной нагрузки.

Для работы в условиях переменной нагрузки, меняется также ток и напряжение выходной цепи.

Для стабилизации выходного напряжения обычно применяют стабилитроны, или эквивалентные транзисторные схемы, ограничивающие выходное напряжение на необходимом уровне. Одна из таких схем показана на рисунке ниже.

Вся схема включена в сеть 220 вольт постоянно, а реле Р1 включается в цепь и выключается с помощью выключателя S1. В качестве выключателя может быть и полупроводниковый прибор, например транзистор.

Транзисторный каскад VT1 включен параллельно нагрузке, он исключает увеличение напряжения во вторичной цепи. Когда нагрузка отключена, ток течёт через транзисторный каскад.

Если бы этого каскада не было, то при отключении S1 и отсутствии другой нагрузки, на выводах конденсатора С2 напряжение могло бы достигнуть максимального сетевого – 315 вольт.

Стоит отметить, что при расчёте схем автоматики с реле, необходимо учитывать, что напряжение срабатывания реле, как правило, равно его номинальному (паспортному) значению, а напряжение удержания реле во включенном состоянии приблизительно в 1,5 раза меньше номинального.

Поэтому, рассчитывая схему, изображённую выше, оптимально вести расчёт конденсатора для режима удержания, а напряжение стабилизации сделать равным номинальному (или чуть выше номинального). Это позволит работать всей схеме в режиме меньших токов, что повышает надёжность.

Таким образом, для расчета емкости конденсатора С1 в схеме с коммутируемой нагрузкой, параметр Uвх мы берём равным не 12 вольт, а в полтора раза меньше – 8 вольт, а для расчёта ограничительного (стабилизирующего) транзисторного каскада – номинальное 12 вольт.

С1 = 1 / ( 2 * 3,14 * 50 * ( (220 * 80) / 8 – 80 ) ) = 1,5 мкФ В качестве стабилизирующего элемента при малых токах можно использовать стабилитрон. При больших токах стабилитрон не годится – слишком малая у него рассеиваемая мощность. Поэтому в таком случае оптимально использовать транзисторную схему стабилизации напряжения.

Расчёт стабилизирующего транзисторного каскада основан на использовании порога открытия биполярного транзистора, при достижении напряжения база-эмиттер 0,65 вольта (на кристалле кремния). Но учтите, что для разных транзисторов это напряжение колеблется в пределах 0,1 вольта, не только по типам, но и по экземплярам транзисторов.

Поэтому напряжение стабилизации на практике может немного отличаться от рассчитанного значения.

Расчёт делителя смещения каскада стабилизации проводится всё по тем же формулам делителя напряжения, при известных Uвх.дел. = 12 вольт, Uвых.дел. = 0,65 вольт и токе транзисторного делителя, который должен быть приблизительно в двадцать раз меньше тока протекающего через ёмкость С1. Этот ток легко найти:

Источник: https://meanders.ru/c_vmesto_r.shtml

Принцип работы бестрансформаторного блока питания на гасящем конденсаторе

Понижающий конденсатор
Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.

Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием.

Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Отсутствие гальванической развязки требует от мастера повышенного внимания при ремонте и наладке схемы!

Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.
-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру. При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.

С такой проблемой был принят в ремонт термостат тёплого пола Electrolux

Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д. Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев) Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании. Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой. Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт. Так же, чтобы убедиться проверяем стабилитрон. А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами Далее проверяем результат нашего ремонта При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

Источник: https://sw19.ru/post/251

Расчет конденсатора для светодиодов

Понижающий конденсатор

Необходимость подключить светодиод к сети – частая ситуация. Это и индикатор включения приборов, и выключатель с подсветкой, и даже диодная лампа.

Существует множество схем подключения маломощных индикаторных LED через резисторный ограничитель тока, но такая схема подключения имеет определённые недостатки. При необходимости подключить диод, с номинальным током 100-150мА, потребуется очень мощный резистор, размеры которого будут значительно больше самого диода.

Вот так бы выглядела схема подключения настольной светодиодной лампы. А мощные десяти ваттные резисторы при низкой температуре в помещении можно было бы использовать в качестве дополнительного источника отопления.

Применение в качестве ограничителя тока конде-ров позволяет значительно уменьшить габариты такой схемы. Так выглядит блок питания диодной лампы мощностью 10-15 Вт.

Принцип работы схем на балластном конденсаторе

В этой схеме конде-р является фильтром тока. Напряжение на нагрузку поступает только до момента полного заряда конде-ра, время которого зависит от его ёмкости. При этом никакого тепловыделения не происходит, что снимает ограничения с мощности нагрузки.

Чтобы понять, как работает эта схема и принцип подбора балластного элемента для LED, напомню, что напряжение – скорость движения электронов по проводнику, сила тока – плотность электронов.

Для диода абсолютно безразлично, с какой скоростью через него будут «пролетать» электроны. Расчет конде-ра основан на ограничении тока в цепи. Мы можем подать хоть десять киловольт, но если сила тока составит несколько микр оампер, количества электронов, проходящих через светоизлучающий кристалл, хватит для возбуждения лишь крохотной части светоизлучателя и свечения мы не увидим.

В то же время при напряжении несколько вольт и силе тока десятки ампер плотность потока электронов значительно превысит пропускную способность матрицы диода, преобразовав излишки в тепловую энергию, и наш LED элемент попросту испарится в облачке дыма.

Расчет гасящего конденсатора для светодиода

Разберем подробный расчет, ниже сможете найти форму онлайн калькулятора.

Расчет емкости конденсатора для светодиода:

С(мкФ) = 3200 * Iсд) / √(Uвх² — Uвых²)

С мкФ – ёмкость конде-ра. Он должен быть рассчитан на 400-500В;
Iсд – номинальный ток диода (смотрим в паспортных данных);
Uвх – амплитудное напряжение сети  — 320В;
Uвых – номинальное напряжение питания LED.

Можно встретить еще такую формулу:

C = (4,45 * I) / (U — Uд)

Она используется для маломощных нагрузок до 100 мА и до 5В.

Расчет конденсатора для светодиода (калькулятор онлайн):

Для наглядности проведём расчёт нескольких схем подключения.

Подключение одного светодиода

Для расчета емкости конде-ра нам понадобится:

  • Максимальный ток диода – 0,15А;
  • напряжение питания диода – 3,5В;
  • амплитудное напряжение сети  — 320В.

Для таких условий параметры конде-ра: 1,5мкФ, 400В.

Подключение нескольких светодиодов

При расчете конденсатора для светодиодной лампы необходимо учитывать, что диоды в ней соединены группами.

  • Напряжение питания для последовательной цепочки – Uсд * количество LED в цепи;
  • сила тока – Iсд * количество параллельных цепочек.

Для примера возьмём модель с шестью параллельными линиями из четырёх последовательных диодов.

Напряжение питания – 4 * 3,5В = 14В;
Сила тока цепи – 0,15А * 6 = 0,9А;

Для этой схемы параметры конде-ра: 9мкФ, 400В.

Простая схема блока питания светодиодов с конденсатором

Разберём устройство без трансформаторного блока питания для светодиодов на примере фабричного драйвера LED ламы.

  • R1 – резистор на 1Вт, который уменьшает значимость перепадов напряжения в сети;
  • R2,C2 – конде-р служит в качестве токоограничителя, а резистор для его разрядки после отключения от сети;
  • C3 – сглаживающий конде-р, для уменьшения пульсации света;
  • R3 – служит для ограничения перепадов напряжения после преобразования, но более целесообразно вместо него установить стабилитрон.

Какой конденсатор можно использовать для балласта?

В качестве гасящих конденсаторов для светодиодов используются керамические элементы рассчитанные на 400-500В. Использование электролитических (полярных) конденсаторов недопустимо.

Меры предосторожности

Безтрансформаторные схемы не имеют гальванической развязки. Сила тока цепи при появлении дополнительного сопротивления, например прикосновение рукой с  оголённому контакту в цепи, может значительно увеличится, став причиной электротравмы.

Оцените, пожалуйста, статью. Мы старались:) (13 4,77 из 5)
Загрузка…

Источник: https://SvetodiodInfo.ru/texnicheskie-momenty/raschet-kondensatora-dlya-svetodioda.html

Конденсаторное питание

Понижающий конденсатор

Что то часто меня стали спрашивать как подключить микроконтроллер или какую низковольтную схему напрямую в 220 не используя трансформатор.

Желание вполне очевидное — трансформатор, пусть даже и импульсный, весьма громоздок. И запихать его, например, в схему управления люстрой размещенной прям в выключателе не получится при всем желании.

Разве что нишу в стене выдолбить, но это же не наш метод!

Тем не менее простое и очень компактное решение есть — это делитель на конденсаторе.

Правда конденсаторные блоки питания не имеют развязки от сети, поэтому если вдруг в нем что нибудь перегорит, или пойдет не так, то он запросто может долбануть тебя током, или сжечь твою квартиру, ну а комп угробить это вообще за милое дело, в общем технику безопасности тут надо чтить как никогда — она расписана в конце статьи. В общем, если я тебя не убедил что бестрансформаторные блоки питания это зло — то сам себе злой Буратино, я тут не причем. Ну ладно, ближе к теме.

Помните обычный резистивный делитель?

Казалось бы, в чем проблема, выбрал нужные номиналы и получил искомое напряжение. Потом выпрямил и Profit. Но не все так просто — такой делитель может и сможет дать нужное напряжение, но вот совершенно не даст нужный ток. Т.к.

сопротивления сильно велики.

А если сопротивления пропорционально уменьшать, то через них насквозь пойдет большой ток, что при напряжении в 220 вольт даст очень большие тепловые потери — резисторы будут греть как печка и в итоге либо выйдут из строя, либо пожар устроят.

Все меняется если один из резисторов заменить на конденсатор. Суть в чем — как вы помните из статьи про конденсаторы, напряжение и ток на конденсаторе не совпадают по фазе. Т.е. когда напряжение в максимуме — ток минимален, и наоборот.

Так как у нас напряжение переменное, то конденсатор будет постоянно разряжаться и заряжаться, а особенность разряда-заряда конденсатора в том, что когда у него максимальный ток (в момент заряда), то минимальное напряжение и наборот.

Когда он уже зарядился и напруга на нем максимальная, то ток равен нулю. Соответственно, при таком раскладе, мощность тепловых потерь, выделяемая на конденсаторе (P=U*I) будет минимальной. Т.е. он даже не вспотеет.

А рективное сопротивление конденсатора Xc=-1/(2pi*f*C).

Теоретическое отступление

В цепи бывают три вида сопротивлений:

Активное — резистор (R)
Реактивное — конденсатор (Xс) и катушка(XL)
Полное же сопротивление цепи (импенданс) Z=(R2+(XL+Xс)2)1/2

Да, чистые активные и реактивные элементы бывают только в теории. Например, у катушки есть индуктивное сопротивление — витки, активное сопротивление — сопротивление проволки и емкостное сопротивление — паразитные конденсаторы образующиеся между витками катушки.
Даже обычный проводник имеет какую то паразитную емкость и индуктивность.

Активное сопротивление всегда постоянно, а реактивное зависит от частоты.
XL=2pi*f * LXc=-1/(2pi*f*C)

Знак реактивного сопротивления элемента указывает на его характер. Т.е. если больше нуля, то это индуктивные свойства, если меньше нуля то емкостные. Из этого следует, что индуктивность можно скомпенсировать емкостью и наоборот.

f — частота тока.

Соответственно, на постоянном токе при f=0 и XL катушки становится равен 0 и катушка превращается в обычный кусок провода с одним лишь активным сопротивлением, а Xc конденсатора при этом уходит в бесконечность, превращая его в обрыв.

Эта зависимость от частоты также показывает почему в высокочастотных устройствах простые, казалось бы, дорожки печатной платы начинают вести себя как детали — а просто из за возросшей частоты их паразитные значения реактивных сопротивлений возрастают до ощутимых величин.

Получается у нас вот такая вот схема:

Теперь надо что-то сделать с тем, что у нас переменка. Не велика проблема — добавим парочку диодов (можно, конечно, и диодный мост, будет эффективней, но с двумя диодами проще) диоды должны быть на ток около ампера, не меньше. И чтобы обратное напряжение было вольт на 500. 1N4007, например, или похожий по параметрам:

Все, в одну сторону ток течет через один диод, в другую через второй. В итоге, в правой части цепи у нас уже не переменка, а пульсирующий ток — одна полуволна синусоиды.

Добавим сглаживающий конденсатор, чтобы сделать напряжение поспокойней, микрофарад на 100 и вольт на 25, электролит:

Но есть тут одна заковыка — у нас напряжение на нагрузке зависит от сопротивления нагрузки. Т.е. если у тебя схема, включенная вместо Rн снизила потребление тока, то соответственно напряжение на ней вырастет. А для всякой нежной электроники это черевато.

Лечится стабилитроном на нужное нам напряжение. Питать мы собираемся микроконтроллер, так что на 5 вольт:

В принципе уже готово, единственно что надо поставить стабилитрон на такой ток, чтобы он не сдох когда нагрузки нет вообще, ведь тогда отдуваться за всех придется ему, протаскивая весь ток который может дать БП.

А можно ему помочь слегонца. Поставить резистор токоограничительный. Правда это сильно снизит нагрузочную способность блока питания, но нам хватит и этого.

Ток который эта схема может отдать можно, ЕМНИП, примерно вычислить по формуле:

I = 2F * C (1.41U — Uвых/2).

  • F — частота питающей сети. У нас 50гц.
  • С — емкость
  • U — напряжение в розетке
  • Uвых — выходное напряжение

Сама формула выводится из жутких интегралов от формы тока и напряжения. В принципе можешь сам ее нагуглить по кейворду «гасящий конденсатор расчет», материала предостаточно.

В нашем случае получается что I = 100 * 0.46E-6 (1.41*U — Uвых/2) = 15мА

Не феерия, но для работы МК+TSOP+оптоинтерфейс какой- нибудь более чем достаточно. А большего обычно и не требуется.

Еще добавить парочку кондеров для дополнительной фильтрации питания и можно использовать:

Еще добавил резюк на 43ом 1Вт, чтобы кондер при втыкании кондер заряжался не так быстро и не было броска тока. На печатке он здоровый такой, возле разьема.

Печатная плата простая и вопросов по ее разводке под другую форму корпуса ни у кого не возникнет. Я же ее тут сделал просто для примера, поэтому не смотрите на ее большие размеры. Я не мельчил:

Как всегда, прикладываю LAY файл.

После чего, как обычно, все вытравил и спаял:

Схема многократно проверена и работает. Я ее когда то пихал в систему управления нагревом термостекла. Места там было со спичечный коробок, а безопасность гарантировалась тотальной остекловкой всего блока.

ТЕХНИКА БЕЗОПАСНОСТИ

В данной схеме нет никакой развязки по напряжению от питающей цепи, а значит схема ОЧЕНЬ ОПАСНА в плане электрической безопасности.

Поэтому надо крайне ответственно подходить к ее монтажу и выбору компонентов. А также внимательно и очень осторожно обращаться с ней при наладке.

Во первых, обратите внимание, что один из выводов идет к GND напрямую из розетки. А это значит что там может быть фаза, в зависимости от того как воткнули вилку в розетку.

Поэтому неукоснительно соблюдайте ряд правил:

  • 1. Номиналы надо ставить с запасом на как можно большее напряжение. Особенно это касается конденсатора. У меня стоит на 400вольт, но это тот что был в наличии. Лучше бы вообще вольт на 600, т.к. в электросети иногда бывают выбросы напряжения намного превышающие номинал. Стандартные блоки питания за счет своей инерционности его переживут запросто, а вот конденсатор может и пробить — последствия представьте себе сами. Хорошо если не будет пожара.
  • 2. Эта схема должна быть тщательным образом заизолирована от окружающей среды. Надежный корпус, чтобы ничего не торчало наружу. Если схема монтируется в стену, то она не должна касаться стен. В общем, пакуем все это дело наглухо в пластик, остекловываем и закапываем на глубине 20метров. :)))))
  • 3. При наладке ни в коем случае не лезть руками ни к одному из элементов цепи. Пусть вас не успокаивает что там на выходе 5 вольт. Так как пять вольт там исключительно относительно самой себя. А вот по отношению к окружающей среде там все те же 220.
  • 4. После отключения крайне желательно разрядить гасящий конденсатор. Т.к. в нем остается заряд вольт на 100-200 и если неосторожно сунуться куда нибудь не туда больно цапнет за палец. Вряд ли смертельно, но приятного мало, а от неожиданности можно и бед натворить.
  • 5. Если используется микроконтроллер , то прошивку его делать ТОЛЬКО при полном выключении из сети. Причем выключать надо выдергиванием из розетки. Если этого не сделать, то с вероятностью близкой к 100% будет убит комп. Причем скорей всего весь.
  • 6. То же касается и связи с компом. При таком питании запрещено подключаться через USART, запрещено обьединять земли.

Если все же хотите связь с компом, то используйте потенциально разделенные интерфейсы. Например, радиоканал, инфракрасную передачу, на худой конец разделение RS232 оптронами на две независимые части.

В общем, я настоятельно НЕ РЕКОМЕНДУЮ пользоваться такой схемой включения. И если можно от нее избавиться, то от нее нужно избавиться. Перейдя на традиционные схемы блоков питания с развязкой от сети.

Ну и, как обычно, видеосьемка процесса запуска девайса от розетки через такой вот БП:

Offtop:
Для троллей я заготовил много вкусной еды — энджой!

Источник: http://easyelectronics.ru/kondensatornoe-pitanie.html

Как рассчитать емкость гасящего конденсатора простого блока питания

Понижающий конденсатор
Блок питания с гасящим конденсатором представляет собой простейший вариант запитать какое нибудь маломощное устройство.При всей своей простоте он имеет и два минуса:1.

Он гальванически связан с сетью! потому такие БП используются там, где нет вероятности прикосновения к контактам.2. Такой Бп имеет не очень большой выходной ток.

При увеличении выходного тока надо увеличивать емкость гасящего конденсатора и его габариты становятся существенными.

Внимание, будьте очень аккуратны, не прикасайтесь к контактам этого БП когда он включен.

Простейшая схема данного БП выглядит так:Как можно увидеть из схемы, последовательно с сетью стоит конденсатор. Он то и является балластом,, на котором гасится часть напряжения.Конденсатор не пропускает постоянный ток, но так как в сети переменный и конденсатор в итоге постоянно перезаряжется, то и получается, что в таком случае ток на выходе есть.

Причем сила тока напрямую зависит от емкости конденсатора.Собственно потому для расчета емкости конденсатора необходимо знать как минимум выходной ток нашего будущего БП, причем надо учесть и потребление стабилизатора, обычно это несколько мА.И так. Есть две формулы, сложная и простая.Сложная – подходит для расчета при произвольном выходном напряжении.

Простая – подходит в ситуациях, когда выходное напряжение не более 10% от входного. I – выходной ток нашего БПUвх – напряжение сети, например 220 ВольтUвых – напряжение на выходе БП (или до стабилизаторе если такой есть), например 12 Вольт.С – собственно искомая емкость.Например я хочу сделать БП с выходным током до 150мА.

Пример схемы приведен выше, вариант применения – радиопульт с питанием 5 Вольт + реле на 12 Вольт.Подставляем наши 0.15 Ампера и получаем емкость 2.18мкФ, можно взять ближайший номинал из стандартных – 2,2мкФ, ну или "по импортному" – 225.Все как бы вроде хорошо, схема простая, но есть несколько минусов, которые надо исключить:1.

Бросок тока при включении может сжечь диодный мост.2. При выходе из строя конденсатора может быть КЗ3. Если оставить как есть, то вполне можно получить разряд от входного конденсатора, так как на нем может долго присутствовать напряжение даже после отключения БП от сети.4. При снятии нагрузки напряжение на конденсаторе до стабилизатора поднимется до довольно большого значения.Решения:1.

Резистор R1 последовательно с конденсатором2. Предохранитель 0.5 Ампера.3. Резистор R2 параллельно конденсатору.4. Супрессор на 12 Вольт параллельно конденсатору после диодного моста. Я не рекомендую здесь использовать стабилитроны, супрессоры рассчитаны на большую мощность рассеивания и схема будет работать надежнее.

На схеме красным цветом я выделил новые компоненты, синим – небольшое дополнение в виде светодиода.Но гасящие конденсаторы используют часто и в дешевых светодиодных лампах. Это плохо, так как у таких ламп меньше надежность и часто высокие пульсации света.Ниже упрощенный вариант схемы такой лампы.

Попробуем рассчитать емкость для такого применения, но так как напряжение на выходе будет явно больше чем 1/10 от входного, то применим первую формулу.В качестве выходного напряжения я заложил 48 Вольт, 16 светодиодов по 3 Вольта на каждом. Конечно это все условно, но близко к реальности.Ток – 20мА, типичный максимальный ток для большинства индикаторных светодиодов.

У меня вышло, что необходим конденсатор емкостью 0.298 мкФ. Ближайший из распространенных номиналов – 0.27 или 0.33мкФ. Первый встречается гораздо реже, а второй уже будет давать превышение тока, потому можно составить конденсатор из двух параллельных, например по 0.15мкФ. При параллельном включении емкость складывается.С емкостью разобрались, осталось еще пара моментов:1.

Напряжение конденсатора2. Тип конденсатора.С напряжением все просто, можно применить конденсатор на 400 Вольт, но надежнее на 630, хоть они и имеют больше размер.С типом чуть сложнее.

Для такого применения лучше использовать конденсаторы, которые изначально предназначены для такого использования, например К73-17, CL21, X2На фото конденсатор CL21А это более надежный вариант, не смотрите что на нем указано 280 Вольт, у него это значение переменного действующего напряжения и он будет работать надежнее, чем К73-17 или CL21.

Такие конденсаторы могут выглядеть и такА вот теперь можно еще раз внимательно посмотреть, что надо для того, чтобы собрать такой "простой" блок питания и решить, нужен ли он.В некоторых ситуациях да, он поможет, но он имеет кучу минусов, потому на мой взгляд лучше применить просто небольшой импульсный блок питания, который уже имеет стабилизированное выходное напряжение, гальваническую изоляцию и больший выходной ток.

Как пример таких блоков питания я могу дать ссылку на подробный обзор четырех вариантов, с тестами, схемами и осмотров.

Но можно поступить еще лучше. Сейчас получили распространение монолитные блоки питания. По сути кубик, в котором находится миниатюрный БП

Например HLK-PM01 производства Hi-link, стоимостью около двух долларов за штуку.

Или их китайский аналог TSP-05 производства Tenstar robot. Они немного дешевле, 1.93 доллара за штуку.

Практика показала, что качество у них сопоставимое.Как я писал выше, они представляют из себя импульсный Бп в модульном исполнении. БП в пластмассовом корпусе залитый эпоксидной смолой.

Выпускаются на разные напряжения и способны поддерживать его на довольно стабильном уровне.Внутренности поближе, на фото вариант от Hi-link

На этом вроде все. Надеюсь, что статья была полезна, постараюсь и в будущем находить интересные темы.

Также интересны пожелания, что хотелось бы видеть в рубрике – Начинающим.

Эту страницу нашли, когда искали:
как расчитать емкость для лампочки на 26в к 220в схема, расчет паразитного конденсатора для блока питания, расчет источника питания от 220в на конденсаторе, какой нужен конденсатор для лед лампы на 24 вольта, трансформаторный блок питания расчет напряжения конденсаторов, конденсатор на 0,15 ампер, конденсатор снижает напряжение, гасить импульсный источник питания, конденсатор какой емкости требуется для паяльника 24 вольта, подбор конденсатора для блока питания 12, определить конденсатор для тока цепи светодиодов, стабилизатор тока на конденсаторе от сети, какой конденсатор ставить на трансформаторном блоке питания, 155k 450v последовательно, подбор пускового конденсатора блока питания, как с помощью емкости конденсатора сделать нужное напряжение, рассчитать понижающий конденсатор, конденсатор для уменьшения напряжения, расчёт гасящего конденсатора для электролитического конденсатора, напряжение бестрансформаторного блока питания после диодного моста, расчет емкости конденсатора для питания нагрузки, конденсатор на выходе блока питания повышает или понижает напряжение, какой нужен конденсатор на 12в, падение напряжения на разделительном конденсаторе, рассчитать ёмкость конденсатора на поддержку питания

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Источник: https://www.kirich.blog/stati/informaciya-dlya-nachinayuschih/244-kak-raschitat-emkost-gasyaschego-kondensatora-prostogo-bloka-pitaniya.html

Как рассчитать и подобрать гасящий конденсатор

Понижающий конденсатор

В самом начале темы, относительно подбора гасящего конденсатора, рассмотрим цепь, состоящую из резистора и конденсатора, последовательно подключенных к сети. Полное сопротивление такой цепи будет равно:

Эффективная величина тока, соответственно, находится по закону Ома, напряжение сети делить на полное сопротивление цепи:

В результате для тока нагрузки и входного и выходного напряжений получим следующее соотношение:

А если напряжение на выходе достаточно мало, то мы имеем право считать эффективное значение тока приблизительно равным:

Однако давайте рассмотрим с практической точки зрения вопрос подбора гасящего конденсатора для включения в сеть переменного тока нагрузки, рассчитанной на напряжение меньшее стандартного сетевого.

Допустим, у нас есть лампа накаливания мощностью 100 Вт, рассчитанная на напряжение 36 вольт, и нам по какой-то невероятной причине необходимо запитать ее от бытовой сети 220 вольт. Лампе необходим эффективный ток, равный:

Тогда емкость необходимого гасящего конденсатора окажется равна:

Имея такой конденсатор, мы обретаем надежду получить нормальное свечение лампы, рассчитываем, что она по крайней мере не перегорит. Такой подход, когда мы исходим из эффективного значения тока, приемлем для активных нагрузок, таких как лампа или обогреватель.

Но что делать, если нагрузка нелинейна и включена через диодный мост? Допустим, необходимо зарядить свинцово-кислотный аккумулятор. Что тогда? Тогда зарядный ток окажется для батареи пульсирующим, и его значение будет меньше эффективного значения:

Иногда радиолюбителю может быть полезным источник питания, в котором гасящий конденсатор включен последовательно с диодным мостом, на выходе которого имеется в свою очередь конденсатор фильтра значительной емкости, к которому присоединена нагрузка постоянного тока. Получается своеобразный бестрансформаторный источник питания с конденсатором вместо понижающего трансформатора:

Здесь нагрузка в целом будет нелинейной, а ток станет уже далеко не синусоидальным, и вести расчеты необходимо будет несколько иначе. Дело в том, что сглаживающий конденсатор с диодным мостом и нагрузкой внешне проявят себя как симметричный стабилитрон, ведь пульсации при значительной емкости фильтра станут пренебрежимо малыми.

Когда напряжение на конденсаторе будет меньше какого-то значения — мост будет закрыт, а если выше — ток пойдет, но напряжение на выходе моста расти не будет. Рассмотрим процесс более подробно с графиками:

В момент времени t1 напряжение сети достигло амплитуды, конденсатор C1 также заряжен в этот момент до максимально возможного значения минус падение напряжения на мосте, которое будет равно приблизительно выходному напряжению. Ток через конденсатор C1 равен в этот момент нулю. Далее напряжение в сети стало уменьшаться, напряжение на мосте — тоже, а на конденсаторе C1 оно пока не изменяется, да и ток через конденсатор C1 пока что нулевой.

Далее напряжение на мосте меняет знак, стремясь уменьшиться до минус Uвх, и в тот момент через конденсатор C1 и через диодный мост устремляется ток. Далее напряжение на выходе моста не меняется, а ток в последовательной цепочке зависит от скорости изменения питающего напряжения, словно к сети подключен только конденсатор C1.

По достижении сетевой синусоидой противоположной амплитуды, ток через C1 опять становится равным нулю и процесс пойдет по кругу, повторяясь каждые пол периода. Очевидно, что ток течет через диодный мост только в промежутке между t2 и t3, и величину среднего тока можно вычислить, определив площадь закрашенной фигуры под синусоидой, которая будет равна:

Если выходное напряжение схемы достаточно мало, то данная формула приближается к полученной ранее. Если же выходной ток положить равным нулю, то получим:

То есть при обрыве нагрузки выходное напряжение станет равно амплитуде сетевого!!! Значит следует применять такие компоненты в схеме, чтобы каждый из них выдержал бы амплитуду напряжения питания.

Кстати, при снижении тока нагрузки на 10%, выражение в скобках уменьшится на 10%, то есть напряжение на выходе увеличится примерно на 30 вольт, если изначально имеем дело, скажем, с 220 вольтами на входе и с 10 вольтами на выходе. Таким образом, использование стабилитрона параллельно нагрузке строго обязательно!!!

А что если выпрямитель однополупериодный? Тогда ток необходимо рассчитывать по такой формуле:

При небольших значениях выходного напряжения ток нагрузки станет вдвое меньшим, чем при выпрямлении полным мостом. А напряжение на выходе без нагрузки окажется вдвое большим, так как здесь мы имеем дело с удвоителем напряжения.

Итак, источник питания с гасящим конденсатором рассчитывается в следующем порядке:

  • Первым делом выбирают, каким будет выходное напряжение.

  • Затем определяют максимальный и минимальный токи нагрузки.

  • Далее определяют максимум и минимум напряжения питания.

  • Если ток нагрузки предполагается непостоянный, стабилитрон параллельно нагрузке обязателен!

  • Наконец, вычисляют емкость гасящего конденсатора.

Для схемы с двухполупериодным выпрямлением, для сетевой частоты 50 Гц, емкость находится по следующей формуле:

Полученный по формуле результат округляют в сторону емкости большего номинала (желательно не более 10%).

Следующим шагом находят ток стабилизации стабилитрона для максимального напряжения питания и минимального тока потребления:

Для однополупериодной схемы выпрямления гасящий конденсатор и максимальный ток стабилитрона вычисляют по следующим формулам:

Выбирая гасящий конденсатор, лучше ориентироваться на пленочные и металлобумажные конденсаторы. Конденсаторы пленочные небольшой емкости — до 2,2 мкф на рабочее напряжение от 250 вольт хорошо работают в данных схемах при питании от сети 220 вольт. Если же вам нужна большая емкость (более 10 мкф) — лучше выбрать конденсатор на рабочее напряжение от 500 вольт.

Андрей Повный 

Источник: http://electrik.info/main/master/1311-kak-rasschitat-i-podobrat-gasyaschiy-kondensator.html

CardioJurnal.Ru
Добавить комментарий