Виды шунтов многопредельные шунты

Статьи

Виды шунтов многопредельные шунты
  Корнеев С.А.   07.04.2014

В статье рассматриваются современные лабораторные средства измерения – электронные токовые шунты, которые применяются в качестве образцовых средств измерений постоянного и переменного тока.Корнеев С.А. АО «ПриСТ»

Шунты токовые предназначены для расширения пределов измерения тока, измерения тока с повышенной точностью и в качестве ограничителей тока. Лабораторные токовые шунты характеризуются стабильным сопротивлением, низким температурным коэффициентом и широким диапазоном сопротивлений.

Современные токовые шунты позволяют проводить измерения в цепях постоянного и переменного тока и обеспечивают широкий частотный диапазон.

В настоящее время для прецизионных измерений применяются шунты с диапазоном частот до 100 кГц и точностью, которую ранее не могли обеспечить коммерчески доступные технологии производства шунтов.

Обычно, шунты представляют из себя набор низкоиндуктивных мер сопротивления и обеспечивают заявленную точность при номинальной нагрузке. С помощью лабораторных шунтов точные измерения можно выполнять в один этап.

Ранее для этих целей требовались более сложные методы с использованием традиционных эталонов-переносчиков переменного и постоянного тока.

Типичная схема определения параметров источников питания с использованием шунтов выглядит следующим образом (рис. 1):

Рисунок 1. Структурная схема определения параметров источника питания

ЛАТР – линейный автотрансформатор V1 – вольтметр напряжения питания. V2 – вольтметр для определения выходного тока источника питания. Rи – мера сопротивления – шунт.

RН – нагрузка электронная (реостат).

Электронная нагрузка, которая используется для задания определенного значения тока, не обеспечивает образцовой точности и в качестве образцового средства измерений используется токовый шунт. В этом случае, действительное значение тока в измерительной цепи определяется соотношением: Iизмi=UV2/RИ.

Также как и электронные нагрузки, которые пришли на смену механическим реостатам, электронные шунты представляют из себя набор механических мер сопротивления, размещенных в одном лабораторном приборе, электронно-коммутируемых с измерительной цепью. Электронные шунты имеют индикаторы для отображения результатов измерений или выходы для подключения измерительного оборудования.

Рассмотрим несколько вариантов современных лабораторных шунтов.

АКИП-7501 (рис. 2) выполнен в моноблочном корпусе с 4-я входными терминалами на передней панели для подключения к измерительным шунтам. Два гнезда терминала «CURRENT INPUT» (красный/черный) обеспечивают последовательное подключение выбранного сопротивления измерительного шунта к нагрузке.

Подключение может быть выполнено при помощи соединителя типа «банан» (4мм) или винтовой клеммой типа «под зажим». Максимальное допустимое значение протекающего тока указано на передней панели прибора над соответствующим терминалом.

Переключатель пределов RANGE при помощи 5 клавиш служит для выбора потенциальных выходных клемм VOLTAGE OUTPUT (пределы падения напряжения) и коммутации к цепи встроенного амперметра (4 1/2 разряда).

В этом же поле панели осуществляется выбор режима шунта: АС (при активации загорается сигнальная лампа) /DC (лампа не горит). Текущее значение тока на шунте можно измерить с помощью встроенного цифрового амперметра, имеющего 4 1/2 разряда.

Подключение шунтов к потенциальному выходу и встроенному амперметру производится при помощи кнопочного переключателя. При этом не обязательно отключать нагрузку от источника тока при переключении предела, т. к. все шунты изолированы друг от друга.

Рисунок 2. Внешний вид токового шунта АКИП-7501

АКИП -7501 обеспечивает прецизионную точность.

Предел допускаемой основной погрешности шунта по сопротивлению составляет от 0,01 % до 0,02 % (в зависимости от предела) на постоянном токе и 0,1 % на переменном токе (до 400 Гц).

Такая точность обеспечивается передачей единицы измерения от Государственных первичных эталонов по поверочной схеме. Данные шунты внесены в Госреестр СИ и рекомендованы к применению в качестве эталонного оборудования.

Следующая модель электронного токового шунта – PCS-71000 (рис. 3) – новая разработка от компании «GOOD WILL INSTRUMENT».

Рисунок 3. Внешний вид токового шунта PCS-71000

Этот электронный шунт сочетает в себе сразу 3 прибора – многозначную меру сопротивления, амперметр 6 1/2 разряда и вольтметр 6 1/2 разряда. Данный шунт имеет тот же набор прецизионных мер сопротивления, что и его аналог АКИП-7501 – 5 эталонных мер сопротивления 0,001 Ом, 0,01 Ом, 0,1 Ом, 1 Ом, 10 Ом, программно коммутируемых с измерительной цепью.

Предел допускаемой основной погрешности шунта по сопротивлению составляет от 0,01 % до 0,02 % на постоянном токе и 0,1 % на переменном токе (до 400 Гц)- аналогично с АКИП-7501. Однако, есть ряд существенных отличий в метрологических и конструктивных параметрах.

В отличие от АКИП-7501 шунт PCS-71000 имеет более высокий верхний предел по току 300 А, который разбит на 5 поддиапазонов 300 А, 30 А, 3 А, 300 мА, 30 мА. Диапазоны 3 А, 300 мА, 30 мА имеют один выход, на который программно коммутируются меры сопротивлений.

Такое решение, казалось бы, повышает риск выбрать не тот диапазон и вывести прибор из строя, если подать ток, превышающий выбранный предел. Но разработчики предусмотрели ряд защитных функций, которые предотвращают ошибку оператора.

Выбор предела по току прибор может осуществлять автоматически, переключая при этом требуемое сопротивление, если ток будет превышать допустимое значение. Высокоамперный выход выведен на заднюю панель. Подключение осуществляется стандартным способом – измерительный провод крепится к клеммам болтовым соединением (рис. 4).

Рисунок . Схема подключения измерительного высокоамперного измерительного кабеля

В результате, шунт PCS-71000 получился более компактный, чем АКИП-7501. Разработчики сделали конструкцию ровно в половину 19” стойки. Таким образом, используя опцию монтажа в 19” стойку можно компактно организовать рабочее место поверителя (рис. 5).

Рисунок 5. Схема монтажа в 19” стойку: одного прибора (сверху) и двух приборов (снизу)

PCS-71000 оснащен полнофункциональными высокоразрядными амперметром и вольтметром. Для вольтметра предусмотрены отдельные входы, рассчитанные на напряжение 600 В для сигнала переменной частоты и до 1000 В постоянного напряжения. Индикаторы тока и напряжения имеют 6 1/2 разряда и могут использоваться для проведения комплексного тестирования параметров источников питания.

На рис. 6 представлена типовая схема подключения шунта в режиме тестирования источника питания.

  1. Измерение напряжения на клеммах нагрузки
  2. Измерение напряжения на клеммах источника
  3. Измерение тока
Рисунок 6. Схема включения PCS-71000 при тестировании источника питания

Помимо встроенного амперметра, для проведения прецизионных измерений в PCS-71000 предусмотрен потенциальный выход, аналогично с АКИП-7501.

Встроенные вольтметр и амперметр имеют настройки, как и более функциональные средства измерений – универсальные вольтметры.

При считывании показаний пользователь может задать число усреднений, выбрать разрядность индикатора, а также настроить скорость отображения результатов измерений на индикаторе.

Также, большим плюсом шунта является наличие интерфейсов дистанционного управления. PCS-71000 имеет интерфейсы USB и GPIB, что позволяет его использовать в автоматизированных измерительных системах.

Все шунты характеризуются коэффициентом мощности. С повышением протекающего через шунт тока, изменяется его номинальное сопротивление. Конструктив и типы используемых компонентов в данных моделях разные, но зависимость изменения сопротивления от мощности в обеих моделях линейная, и не превышает пределов допускаемой основной погрешности шунта по сопротивлению.

Для точных электроизмерений немаловажное значение имеют не только технические характеристики СИ, но и соединительные кабели, как самостоятельный элемент схем коммутации при тестировании.

В области электроизмерений подход к конструкции кабельной сборки или перехода должен осуществляться исходя из специфики и условий его применения. Компания «ПриСТ» рекомендует пользоваться измерительными проводами только известных торговых марок, таких как Pomona, США.

Американская компания Pomona, имеющая более чем 50-летний опыт в производстве аксессуаров к измерительным приборам учитывает все современные требования к такой продукции, а в производстве использует только высококачественные материалы.

Для обеспечения предела диапазона по току до 250 А предлагается опция специального высокостабильного по сопротивлению кабеля (рис. 7).

Рисунок 7. Кабель для подключения нагрузки до 250 А производства Pomona (США)

Электронные токовые шунты АКИП-7501 и PCS-71000 являются новейшими разработками в области точных электроизмерений и обладают всеми достоинствами современных лабораторных средств измерений:

  • высокая точность измерений
  • компактное исполнение
  • универсальность и многофункциональность
  • возможность дистанционного управления (PCS-71000)

У нас представлены товары лучших производителей

ПРИСТ предлагает оптимальные решения измерительных задач.

У нас вы можете купить осциллограф, источник питания, генератор сигналов, анализатор спектра, калибратор, мультиметр, токовые клещи, поверить средства измерения или откалибровать их.

Также мы поставляем паяльно-ремонтное оборудование, антистатический инструмент, промышленную мебель.

Мы имеем прямые контракты с крупнейшими мировыми производителями измерительного оборудования, благодаря этому можем подобрать то оборудование, которое решит Ваши задачи. Имея большой опыт, мы можем рекомендовать продукцию следующих торговых марок:

Источник: https://prist.ru/library/stati/elektronnye_tokovye_shunty__noveyshee_slovo_v_laboratornyh_izmereniyah/

Измерительные шунты и добавочные резисторы

Виды шунтов многопредельные шунты

Измерительные шунты

Шунт является простым измерительным преобразователем тока в напряжение.
Измерительный шунт представляет собой четырехзажимный резистор. Два входных зажима
шунта, к которым подводится ток
I, именуются токовыми, а два выходных зажима, с которых снимается напряжение U,
именуются возможными.

К возможным зажимам шунта обычно присоединяют измерительный механизм
измерительного прибора.

Измерительный шунт характеризуется номинальным значением входного тока
Iном и номинальным значением выходного напряжения
Uном. Их отношение
определяет номинальное сопротивление шунта:

Rш= Uном / Iном

Шунты используются для расширения пределов измерения измерительных устройств по току, при всем этом огромную часть измеряемого тока пропускают через шунт, а наименьшую — через измерительный механизм. Шунты имеют маленькое сопротивление и используются, приемущественно, в цепях неизменного тока с магнитоэлектрическими измерительными механизмами.

Рис. 1. Схема соединения измерительного механизма с шунтом

На рис. 1 приведена схема включения магнитоэлектрического механизма
измерительного прибора с шунтом Rш. Ток
Iи протекающий через измерительный механизм, связан с измеряемым током
I зависимостью

Iи = I (Rш
/ Rш + Rи),

где Rи — сопротивление измерительного механизма.

Если нужно, чтоб ток Iи был в
n раз меньше тока I, то сопротивление шунта должно быть:

Rш = Rи
/ (n — 1),

где n = I / Iи  — коэффициент шунтирования.

Шунты изготовляют из манганина. Если шунт рассчитан на маленький ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения огромных токов употребляют приборы с внешними шунтами В данном случае мощность, рассеиваемая в шунте, не нагревает прибор.

На рис. 2 показан внешний шунт на 2000 А Он имеет мощныенаконечники из меди, которые служат для отвода тепла от манганиновых пластинок,

впаянных меж ними. Зажимы шунта А и Б — токовые.

Рис 2 Внешний шунт

Измерительный механизм присоединяют к возможным зажимам В и Г, меж которыми и заключено сопротивление шунта. При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Внешние шунты обычно производятся калиброванными, т е. рассчитываются на определенные токи и падения напряжения.
Калиброванные шунты обязаны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.

Для переносных магнитоэлектрических устройств на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения.

На рис. 3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать зависимо от предела измерения рычажным тумблером (рис. 3, а) либо методом переноса провода с 1-го зажима на другой (рис. 3, б).

При работе шунтов с измерительными устройствами на переменном токе появляется дополнительная погрешность от конфигурации частоты, потому что сопротивления шунта
и измерительного механизма поразному зависят от частоты.

Рис.3. Схемы многопредельных измерительных шунтов: a — шунта с рычажным тумблером, б — шунта с отдельными выводами

Шунты делятся на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

Дополнительные резисторы

Дополнительные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока конкретно реагируют измерительные механизмы вольтметров.

Дополнительные резисторы служат для расширения пределов измерения по напряжению вольтметров разных систем и других устройств, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, к примеру, ваттметры, счетчики энергии, фазометры и т. д.

Дополнительный резистор включают поочередно с измерительным механизмом (рис. 4). Ток
Iи в цепи, состоящий из измерительного механизма с сопротивлением Rи и дополнительного резистора с сопротивлением Rд,
составит:

Iи = U /
(Rи + Rд),

где U — измеряемое напряжение.

Если вольтметр имеет предел измерения Uном и сопротивление измерительного механизма Rи и с помощью дополнительного резистора Rд нужно расширить предел измерения в
n раз, то, беря во внимание всепостоянство тока
Iи, протекающего через измерительный механизм вольтметра, можно записать:

Uном / Rи
= n U ном / (Rи + Rд)

откуда

Rд = Rи
(n — 1)

Рис 4. Схема соединения измерительного механизма с дополнительным резистором

Дополнительные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластинки либо каркасы из изоляционного материала. Они
используются в цепях неизменного и переменного тока.

Дополнительные резисторы, созданные для работы на переменном токе, имеют бифилярную обмотку для получения безреактивного сопротивления.

При применении дополнительных резисторов не только лишь расширяются пределы измерения вольтметров, да и миниатюризируется их температурная погрешность.

В переносных устройствах дополнительные резисторы изготовляются секционными на несколько пределов измерения (рис. 5).

Рис. 5. Схема многопредельного вольтметра

Дополнительные резисторы бывают внутренние и внешние. Последние производятся в виде отдельных блоков и разделяются на личные и калиброванные. Личный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с хоть каким прибором, номинальный ток которого равен номинальному току дополнительного резистора.

Калиброванные дополнительные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они производятся на номинальные токи от 0,5 до 30 мА.

Дополнительные резисторы используются для преобразования напряжений до 30 кВ.

Источник: http://elektrica.info/izmeritel-ny-e-shunty-i-dobavochny-e-rezistory/

A rel=

Виды шунтов многопредельные шунты

Тема 4.2. Шунты и добавочные резисторы
Лекция 8(2 часа)
Измерительные шунты и добавочные резисторы
План лекции:
    1. Измерительные шунты.
    2. Добавочные резисторы.
    3. Изменение пределов измерения амперметра и вольтметра.

Цель занятия:

Знать:

  • характеристики измерительного шунта;
  • виды различных шунтов;
  • для чего служат добавочные резисторы;
  • схему соединения измерительного механизма с добавочным резистором;
  • схему многопредельного вольтметра;
  • схему подключения многопредельных шунтов на небольшие токи.

Уметь:

  • чертить различные схемы соединения измерительного механизма с шунтом;
  • определять различные виды шунтов.

Шунт является простейшим измерительным преобразователем тока в напряжение. Измерительный шунт представляет собой четырехзажимный резистор. Два входных зажима шунта, к которым подводится ток I, называются токовыми, а два выходных зажима, с которых снимается напряжение U, называются потенциальными.

К потенциальным зажимам шунта обычно присоединяют измерительный механизм измерительного прибора.

Измерительный шунт характеризуется номинальным значением входного тока Iном и номинальным значением выходного напряжения Uном. Их отношение определяет номинальное сопротивление шунта:

Шунты применяются для расширения пределов измерения измерительных механизмов по току, при этом большую часть измеряемого тока пропускают через шунт, а меньшую – через измерительный механизм. Шунты имеют небольшое сопротивление и применяются, главным образом, в цепях постоянного тока с магнитоэлектрическими измерительными механизмами.Рис. 8.1. Схема соединения измерительного механизма с шунтом

На рис. 8.1 приведена схема включения магнитоэлектрического механизма измерительного прибора с шунтом Rш. Ток Iи протекающий через измерительный механизм, связан с измеряемым током I зависимостью

Iи = I (Rш / Rш + Rи)

(8.2.)

где Rи – сопротивление измерительного механизма.

Если необходимо, чтобы ток Iи был в n раз меньше тока I, то сопротивление шунта должно быть:

где n = I / Iи  – коэффициент шунтирования.

Шунты изготовляют из манганина. Если шунт рассчитан на небольшой ток (до 30 А), то его обычно встраивают в корпус прибора (внутренние шунты). Для измерения больших токов используют приборы с наружными шунтами. В этом случае мощность, рассеиваемая в шунте, не нагревает прибор.

На рис. 8.2 показан наружный шунт на 2000 А Он имеет массивные наконечники из меди, которые служат для отвода тепла от манганиновых пластин, впаянных между ними. Зажимы шунта А и Б – токовые.

Измерительный механизм присоединяют к потенциальным зажимам В и Г, между которыми и заключено сопротивление шунта.

При таком включении измерительного механизма устраняются погрешности от контактных сопротивлений.

Рис. 8.2. Наружный шунтНаружные шунты обычно выполняются калиброванными, т. е. рассчитываются на определенные токи и падения напряжения. Калиброванные шунты должны иметь номинальное падение напряжения 10, 15, 30, 50, 60, 75, 100, 150 и 300 мВ.Для переносных магнитоэлектрических приборов на токи до 30 А внутренние шунты изготовляют на несколько пределов измерения.

На рис. 8.3, а, б показаны схемы многопредельных шунтов. Многопредельный шунт состоит из нескольких резисторов, которые можно переключать в зависимости от предела измерения рычажным переключателем (рис. 8.3, а) или путем переноса провода с одного зажима на другой (рис. 8.3, б).

При работе шунтов с измерительными приборами на переменном токе возникает дополнительная погрешность от изменения частоты, так как сопротивления шунта и измерительного механизма по-разному зависят от частоты.
Рис. 8.3.

Схемы многопредельных измерительных шунтов: a – шунта с рычажным переключателем; б – шунта с отдельными выводамиШунты разделяются на классы точности 0,02; 0,05; 0,1; 0,2 и 0,5. Число, определяющее класс точности, обозначает допустимое отклонение сопротивления шунта в процентах его номинального значения.

Добавочные резисторы являются измерительными преобразователями напряжения в ток, а на значение тока непосредственно реагируют измерительные механизмы вольтметров.

Добавочные резисторы служат для расширения пределов измерения по напряжению вольтметров различных систем и других приборов, имеющих параллельные цепи, подключаемые к источнику напряжения. Сюда относятся, например, ваттметры, счетчики энергии, фазометры и т. д.

Добавочный резистор включают последовательно с измерительным механизмом (рис. 8.4). Ток Iи в цепи, состоящий из измерительного механизма с сопротивлением Rи и добавочного резистора с сопротивлением Rд, составит:

Iи = U / (Rи + Rд)

(8.4.)

где U – измеряемое напряжение.

Если вольтметр имеет предел измерения Uном и сопротивление измерительного механизма Rи и при помощи добавочного резистора Rд надо расширить предел измерения в n раз, то, учитывая постоянство тока Iи, протекающего через измерительный механизм вольтметра, можно записать:

Uном / Rи = n Uном / (Rи + Rд)

(8.5.)

откуда Rд = Rи(n 1)

Добавочные резисторы изготовляются обычно из изолированной манганиновой проволоки, намотанной на пластины или каркасы из изоляционного материала. Они применяются в цепях постоянного и переменного тока.Рис. 8.4. Схема соединения измерительного механизма с добавочным резисторомДобавочные резисторы, предназначенные для работы на переменном токе, имеют бифилярную обмотку для получения безреактивного сопротивления. При применении добавочных резисторов не только расширяются пределы измерения вольтметров, но и уменьшается их температурная погрешность. В переносных приборах добавочные резисторы изготовляются секционными на несколько пределов измерения (рис. 8.5).Рис. 8.5. Схема многопредельного вольтметраДобавочные резисторы бывают внутренние и наружные. Последние выполняются в виде отдельных блоков и подразделяются на индивидуальные и калиброванные. Индивидуальный резистор применяется только с тем прибором, который с ним градуировался. Калиброванный резистор может применяться с любым прибором, номинальный ток которого равен номинальному току добавочного резистора.

Калиброванные добавочные резисторы делятся на классы точности 0,01; 0,02; 0,05; 0,1; 0,2; 0,5 и 1,0. Они выполняются на номинальные токи от 0,5 до 30 мА.

Добавочные резисторы применяются для преобразования напряжений до 30 кВ.

    1. Изменение пределов измерения амперметра и вольтметра

(расчет шунтов и добавочных резисторов)
В практике электрических измерений встречается необходимость измерять токи, напряжения и другие величины в очень широком диапазоне их значений.

Для измерения малых токов и напряжений используется гальванометр. Рассмотрим, каким образом можно расширить его возможности (пределы измерения) для измерения токов и напряжений.

Допустим, гальванометр может измерять максимальную силу тока Iг, а нам необходимо измерить силу тока I.

Тогда ток IIг необходимо пропустить не через гальванометр (микроамперметр), а рядом, по параллельной цепи (рис. 8.6, а). Такую электрическую цепь, включаемую параллельно гальванометру и служащую для расширения пределов измерения амперметра, называют шунтом.

В этом случае возникает необходимость рассчитать сопротивление шунта и проградуировать шкалу гальванометра в новых значениях силы тока.

Пусть I – сила тока, которую необходимо измерить, Iг – максимальная сила тока, которую может измерить гальванометр.

Тогда Iш = IIг   – сила тока, которая должна протекать через шунт. Обозначим Rг – сопротивление гальванометра, Rш – сопротивление шунта.

По законам параллельного соединения проводников Uш = Uг.

Здесь n = I/Iг – коэффициент шунтирования. Рассчитав по формуле сопротивление шунта, подбираем шунт.

Для изготовления шунтов на небольшие токи используют провод из манганина, а на большие – манганиновые пластины (манганин обладает малым температурным коэффициентом сопротивления и поэтому сопротивление шунта почти не изменяется при нагревании протекающим током). Схема подключения многопредельных шунтов на небольшие токи показана на рисунке 8.6, б

Рис. 8.6. Схема подключения многопредельных шунтов на небольшие токиШунты на токи до 30 А обычно встраивают внутрь прибора. Для измерения больших токов (до 6000 А) используют приборы с наружными шунтами. Наружные шунты имеют массивные наконечники из красной меди, к которым подключаются токовые и потенциальные зажимы.

Шунт представляет собой четырехзажимный резистор. Два зажима шунта, к которым подводится ток, называются токовыми, а два зажима, с которых снимается напряжение, называются потенциальными. К потенциальным зажимам шунта подключается измерительный механизм. Схема подключения четырехзажимного шунта показана на рисунке 8.7. Рис. 8.7.

Схема подключения четырехзажимного шунтаНаружные шунты делают взаимозаменяемыми. Шунты в соответствии с ГОСТ могут иметь номинальное падение напряжения на потенциальных зажимах 10, 15, 30, 50, 60, 75, 300 мВ.

Для расширения пределов измерения гальванометра при использовании его в качестве вольтметра последовательно с гальванометром включают добавочный резистор (рис. 8.8, а).  Рассчитаем  сопротивление  добавочного  резистора.

Пусть U – напряжение, которое надо измерить вольтметром, Uг – максимальное напряжение, которое может измерить гальванометр. Тогда Uд = UUг  – напряжение, которое должно падать на добавочном резисторе.

Обозначим Rг – сопротивление гальванометра, Rд – сопротивление добавочного резистора.

По законам последовательного соединения проводников Iг = Iд или  Uг/Rг = Uд/Rд.

Отсюда с учетом напряжения на добавочном резисторе получим:

Rд = Rг (U-Uг)/Uг = Rг (n – 1)

(8.6.)

          

где n = U/Uг.

Рассчитав сопротивление добавочного резистора, выбирают соответствующий постоянный резистор с учетом его мощности рассеяния. Далее градуируют шкалу гальванометра в новых значениях напряжения. Добавочные резисторы бывают встраиваемые в корпус прибора и наружные. На рисунках 8.

8, б и 8.8, в показаны различные способы подключения встроенных добавочных резисторов. Добавочные резисторы для работы на переменном токе должны иметь бифилярную намотку (проволочный резистор, имеющий бифилярную намотку, не обладает индуктивным сопротивлением).

Рис. 8.8. Способы подключения встроенных добавочных резисторовШунты и добавочные резисторы в основном применяют с магнитоэлектрическими измерительными механизмами.

Вопросы самопроверки:

  1. Как включаются в электрическую цепь амперметр и вольтметр?
  2. Какое сопротивление называется шунтирующим? Приведите формулу для расчета сопротивления шунта к амперметру.
  3. В каких случаях амперметры включаются в измерительную цепь без шунтов, вольтметры – без добавочных сопротивлений?
  4. В каких случаях применяются наружные и внутренние шунты?
  5. Какие шунты называют многопредельными?
  6. Приведите формулу расчета добавочного сопротивления к вольтметру.
  7. Каково назначение шунтов и добавочных резисторов?
  8. Перечислите способы подключения шунтов и добавочных резисторов.
  9. Нарисуйте схему многопредельного вольтметра.
  10. Как подразделяется диапазон измеряемых сопротивлений?
  11. Назовите прямые и косвенные виды измерения сопротивлений.
  12. Что лежит в основе выбора метода измерения сопротивления?

Источник: http://rykovodstvo.ru/exspl/40980/index.html?page=12

CardioJurnal.Ru
Добавить комментарий